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Abstract. We demonstrate how the stripe-domain configuration which is the most stable one
in thin ferromagnetic films with perpendicular magnetization can be easily analysed in terms
of Bose–Einstein integrals. Exact values for the equilibrium thickness of stripes as well as
for the minimal free energy of the domain configuration in ultrathin samples are derived from
little-known asymptotic expansions of the Bose–Einstein integrals. It is found that, due to an
incidental cancellation, the lowest-order results for the stripe structure are exact also to the next
order in the small parameter (the ratio of thickness to domain width). The minimization equation
for the determination of the equilibrium quantities of interest is cast in a form that makes it
applicableanalytically to films which are not necessarily ultrathin and that allows one to control
quantitatively the approximations made. The analytic solution, valid to a high order in the small
ratio, is also given.

1. Introduction

Because of the significant practical implications, domain structure in thin and ultrathin
ferromagnetic films has recently been the object of vigorous experimental and theoretical
investigation [1, 2]. In principle, micromagnetism provides the tools, but not always the
solution, for the analysis of possible domain patterns [3–5]. A special group of ever-
increasing interest among these are arrays of domains with their magnetization perpendicular
to the surface of the specimen (cf [6] and references therein).

Theoretical progress in describing perpendicular domain patterns exhibits an astonishing
feature: only cases which seemed realistic from the contemporary technological point of
view were examined. Kittel set up the magnetostatic framework in principle, but examined
the energetics of a sample whose thicknessT was much larger than the typical domain
width D (T/D � 1), neglecting the dipolar interaction of the surface poles [7]. Rowlands
[8] and, independently, Malek and Kambersky [9] solved the classic magnetostatic problem
for the striped array. The latter authors examined also the case of thin films where thickness
and domain width became comparable (T/D ∼ 1) [9]. Kooy and Enz [10] solved the more
general problem of striped perpendicular domain arrays with an external magnetic field
applied perpendicular to the surface and taking account of theµ-effect [11]. Regular arrays
of perpendicular domains in very thin and ultrathin films (T/D � 1) have been examined
in sufficient detail only recently as the reproducible tailoring of structural and magnetic
properties of ultrathin ferromagnetic films responded to increased practical interest. The
analysis of Yafet and Gyorgy showed that the striped pattern is of lower overall energy
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than the checkerboard one [12], while Kaplan and Gehring confirmed this conclusion by
involved numerical analysis [13] and settled an apparent contradiction with the results of
Czech and Villain [14] for the energetics of domain arrays in Ising-like ferromagnetic films.

2. The model and its relation to Bose–Einstein (BE) integrals

Given a regular array of stripe domains of perpendicular magnetization in zero applied field
and assuming that the thickness of the domain walls is negligible compared againstD,
the magnetostatic solution for the total energy of the pattern is given by the expression
[8, 9, 13]:

Etot = Ewall + Edip (1)

where the domain wall contribution is

Ewall = γ x (2)

while the dipolar (self-energy) contribution is given by

Edip = E0S̄(x). (3)

The notation is chosen to facilitate further manipulations:γ = σw/π with σw being the
domain wall energy density per unit area;E0 = 2πT M2

s with Ms denoting the spontaneous
magnetization; and

x ≡ π
T

D
(4)

while

S̄(x) ≡ S(x)
/[

3

4
ζ(2)

]
(5)

is a normalized quantity with the zeta-functionζ(2) = π2/6 and

S(x) ≡ 1

x

∞∑
k=0

1 − e−(2k+1)x

(2k + 1)3
. (6)

The energyE0 = limx→0 Edip is the energy of the homogeneously perpendicularly
magnetized film in the ultrathin limit (T → 0). In the opposite limitx → ∞ (T → ∞),
the self-energy is negligible.

The deceptively simple sumS(x) poses difficulties in the limitx → 0. The nature of
these difficulties is best revealed by exposing the connection of the quantityS(x) to the BE
integrals which has obviously escaped attention: one completes the sum in equation (6) to
run overall positive integers by adding and subtracting the corresponding sum overeven
positive integers. The generic quantity which arises in the process is

σ(x) =
∞∑

n=1

e−nx

n3
(7)

and, by applying Wheelon’s summation technique [15] or by simply recalling known results
from applications of BE statistics [16, 17], one finds that

σ(x) = B2(−x) (x > 0) (8)

and, consequently,

S(x) = 1

x

{1

8

[B2(−2x) − B2(0)
] − [B2(−x) − B2(0)

]}
(9)
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where we have taken up Dingle’s definition for the BE integrals of integer orderp [18]:

Bp(µ) = 1

p!

∫ ∞

0

du up

eu−µ − 1
. (10)

Note thatBp(0) = ζ(p + 1).
Obviously, we have now expressedEtot in terms of BE integrals. Moreover, by virtue

of

B′
p(µ) = Bp−1(µ) (11)

the minimization condition∂Etot /∂x = 0 for the determination of the equilibrium value of
the domain width at fixed film thicknessT is also compactly expressed in terms ofB2 and
B1:

π2 γ

E0
x2 +

[
8B1(−x) − 2B1(−2x)

]
x +

[
8B2(−x) − B2(−2x) − 7B2(0)

]
= 0. (12)

3. Analysis by implementing the asymptotics for BE integrals

The reason for which one should be pleased to have expressed the domain morphology
problem in terms of BE integrals is that the asymptotic expansion ofBp for |x| < 2π

was found a long time ago (cf [18] and references therein), the driving force in the
development being mathematical curiosity as well as the application to the (nowadays
renewedly celebrated) phenomenon of BE condensation.

Following from [18],

Bp(x) =
∞∑

k=0(k 6=p)

ζ(p + 1 − k)
xk

k!
−

[
ln|x| − ψ(p + 1) + ψ(1)

]
xp

p!
. (13)

Here, ψ(z) = d ln0(z + 1)/dz is the digamma function [19]. This expansion is valid for
|x| < 2π , i.e. for T/D < 2. The immediate consequence is that the results which follow
apply not only in the ultrathin limit.

We specify the expansion forp = 2, whereby we use the known relations

ζ(−2n) = 0 (n = 1, 2, . . .) (14)

ζ(1 − 2n) = −B2n/2n (n = 1, 2, . . .) (15)

whereB2n are the Bernoulli numbers. The result now reads

B2(x) = ζ(3) + ζ(2)x + 1

6
ζ(0)x3 + 1

2

(
3

2
− ln|x|

)
x2 −

∞∑
n=1

B2n

2n

x2n+2

(2n + 2)!
. (16)

Use was made ofψ(3) − ψ(1) = 3/2; besides,ζ(0) = −1/2. Substituting in equations (1)
and (9) and rearranging terms, one finds the expansion of the total energy of the stripe
configuration in the form:

Etot = γ x + E0
3
4ζ(2)

[
3

4
ζ(2) + 1

4

(
ln

|x|
2

− 3

2

)
x −

∞∑
n=1

(22n−1 − 1)
B2n

2n

x2n+1

(2n + 2)!

]
(17)

(|x| < 2π ). The terms within the brackets which are not included in the infinite sum have
recently been derived by Rowlands in a spectacularly simple way [20].

The dipolar contributionEdip which is given by the second term exhibits an interesting
and useful feature. There are no terms of even powers inx. The absence of an O(x2)-term
is due to anincidental cancellationat the intermediate stages which is specific to the domain
problem in question, while the higher-even-order terms aresystematically absent. Thus, if
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the minimization is carried out to a given order, O(x2k+1, x ln x), the result is automatically
correct to one order higher. The condition for the extremum ofEtot , derived either via
term-by-term differentiation ofEtot (x) or from equation (12) combined with equation (13),
now takes the form

ln

(
x

2

)
= −3ζ(2)

γ

E0
+ 1

2
+

∞∑
n=1

(22n−1 − 1)
B2n

n(n + 1)

x2n

(2n)!
. (18)

The lowest-order solution for the equilibrium valuex0 = πT/D0 is now found by
neglecting the sum on the r.h.s. of the last equation. Thus,

x0 = 2
√

e e−3ζ(2)γ /E0 (19)

and, consequently,

Emin
tot = Etot (x = x0) = E0

(
1 − 1

3ζ(2)
x0

)
= E0

(
1 − 4

√
e

π2
e−(π/2)σw/E0

)
. (20)

For a given thicknessT , the equilibrium domain widthD0 is

D0(T ) = π

2
√

e
T eσw/4M2

s T . (21)

Theexactasymptotic coefficients which multiply the exponentials in equations (??) and
(??) can be compared with the numerical results of [13] and one finds that the latter have
been determined sufficiently accurately. Below, we give in the first column the exact values
and in the second column those of [13] for the numerical coefficients in equations (20) and
(21):

4
√

e

π2
= 0.668 201 5624 0.667 (22)

π

2
√

e
= 0.952 736 1325 0.955. (23)

The insight that the lowest-order results are in fact valid to O(x2) in Edip means,
in particular, that the formulae derived above are valid under significantly more relaxed
experimental conditions; hence, one may use them to address stripe patterns not only in
ultrathin films.

In a method of systematic improvement, we now derive the results valid to O(x4) in
the expansion forEdip(x). To this end, one keeps the term of O(x2) in equation (??):

ln

(
x

2

)
= −3ζ(2)

γ

E0
+ 1

2
+ 1

24
x2. (24)

This is seemingly a transcendental equation which can, however, be solved exactly for high

x by using the ‘trick’ 1
24x

2 = ln

(
1 + 1

24x
2

)
+ O(x4). Hence,

ln
x

2(1 + 1
24)x

2
= −3ζ(2)

γ

E0
+ 1

2
(25)

and, upon exponentiating, one finds that

x

1 + 1
24x

2
= x0 (26)
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with x0 supplied by the lowest-order solution (equation (??)). Thus, the equilibrium values
which will now be denoted by a subscript ‘1’ and which are valid to O(x4) in the dipolar
self-energy are given by

x1 = 12

x0

(
1 −

√
1 − x2

0/6

)
≈ x0

(
1 + 1

24
x2

0

)
(27)

D1 = π

12
T

x0

1 −
√

1 − x2
0/6

≈ D0(T )

(
1 − π2

24

(
T

D0(T )

)2)
(28)

Etot,1 ≈ E0

(
1 − 2

π2
x0 − 1

36π2
x3

0

)
. (29)

The last terms in the equations forx1, D1, and Etot,1 given above represent the exact
corrections including O(x4) in Edip. Hence, the expressions in equations (28)–(30) would
prove practically exact even for ratios as high asT/D ∼ 0.1. In any case, equation (??)
allows one to control quantitatively the approximations which are being made.

4. Discussion

We have been able to analyse the energetics of the stripe-domain configuration for thin
films with perpendicular magnetization by recognizing the possibility of expressing the
problem in terms of the Bose–Einstein integrals of mathematical physics. Systematic use
of the properties of these integrals and of their asymptotic expansion for small values of
their argument makes possible the explicit derivation of the minimizing equation for the
equilibrium value of the ratio of thicknessT to domain periodD. In the present context,
the equation is applicable up to ratiosT/D < 2. In the first nonnegligible approximation,
we have derived the asymptotically exact expressions forEmin

tot and for (T /D)min which,
for a given thickness of the film, lead to the corresponding expression for the equilibrium
width of the domain patternD. The same equilibrium quantities are computed to the second
nonnegligible order in the said ratio and this is O(x4) for Edip. Thus, ultrathin and thin
films can be treated analytically on the same footing with any required degree of accuracy.

Provided that sufficient information is obtained experimentally or theoretically about
the thickness dependence of the domain wall energy, the analytic advance described above
can also be used as a starting point for the quantitative analyses of the maximal density
of the domains in this configuration in very thin films and its temperature behaviour.
This would certainly shed light on some aspects of the temperature- and thickness-driven
reorientations of the magnetization in very thin ferromagnetic films [21, 22]. Besides this,
the application of the proposed technique to cases with applied external magnetic fields
seems very promising and is currently under consideration.
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